Piecewise-Linear Manifolds for Deep Metric Learning

Shubhang Bhatnagar, Narendra Ahuja University of Illinois Urbana-Champaign

Unsupervised Deep Metric Learning: Goal

Learn a low dimensional representation

- Where semantic similarity encoded as distance
 - (higher distance in representation space = more dissimilarity)
- Using only unlabeled data

A t-sne visualization of a semantic representation space learnt using metric learning on the CUB-200 dataset

Unsupervised Deep Metric Learning: How?

Extract features using Pre-trained network Cluster extracted features to identify similar subsets (pseudo-labels)

Fine-tune network using extracted pseudo-labels

Challenges

Large domain gaps (between Pre-training and DML data)

Erroneous Clusters

Poor clusters lead to poor models

Need better models in feature space!

Method: Piecewise Linear manifolds

Obtain a Piecewise Linear model of the data manifold

Train network using semantic similarity information extracted from model

Better Class models than clustering

Update Embeddings to improve Piecewise Linear model

Method: Intuition

2D visualization of features extracted from a toy dataset

Our method uses a 3 step process

Step 1

- Grow neighborhood around each point
- Approximate it with a linear model
- Add all points that do not breach error threshold

Method: Intuition

Step 2

Similarity Calculation between x_1, x_2

- Similarity decays both along D and perpendicular to it
- Faster decay in similarity perpendicular to D

Method: Intuition

Step 2

Similarity Calculation between x_1, x_2

- Similarity decays both along D and perpendicular to it
- Faster decay in similarity perpendicular to D

Method: Implementation

Method: Estimating Similarity

- Calculate similarity between each pair of points using the piecewise linear manifold model
- Similarity $s'(x_1, x_2)$ is a **decreasing** function of
 - 1. Orthogonal distance of x_1 from linear submanifold P_2
 - 2. Distance of x_2 from the projection of x_1 on P_2
- Functional form of the similarity on distance is chosen to be reciprocal (≈other forms)
- Steeper decrease with orthogonal distance
- Normalized to (0,1)

Method: Proxy Manifold

- Batch may not represent complete data manifold
- Proxies help cover the gaps.
- Proxies
 - Represent linear approximation of local manifold
 - Are treated like data embeddings
 - Learnt using backpropagation
- First work demonstrating their use & benefits in an unsupervised metric learning

Method: Training

- Loss has 2 main functions
 - 1. Updates embedding network:

Matches Dissimilarity Euclidean Distance

$$\left(egin{array}{ccc} \delta imes \left(1 \ - \ s(\mathbf{x}_i,\mathbf{x}_j) \
ight) - \|f_ heta(\mathbf{x}_i) - f_ heta(\mathbf{x}_j)\|_2
ight)^2
ight)^2$$

(between point embeddings)

2. Updates Proxy manifold

Aligns proxy manifold towards most similar data points in current batch

$$\mathcal{L} = \mathcal{L}_{point} + \mathcal{L}_{proxy} + \mathcal{L}_{neighborhood}$$

Results: Image Retrieval

- Embedding learnt tested on zero shot image retrieval
 - Cars-196
 - CUB-200-2011
 - Stanford Online Products
- GoogleNet backbone with
 - 128 dim embedding
 - 512 dim embedding
- Performance measured using Recall@K

Results: Image Retrieval using R@K

Benchmarks \rightarrow		CUB-2	00-2011			Cars	s -19 6			SOP	
Methods ↓	R @1	R@2	R@4	R@8	R @1	R@2	R@4	R@8	R @1	R @10	R @100
GoogleNet (128 dim)											
Examplar [38]	38.2	50.3	62.8	75.0	36.5	48.1	59.2	71.0	45.0	60.3	75.2
NCE [25]	39.2	51.4	63.7	75.8	37.5	48.7	59.8	71.5	46.6	62.3	76.8
DeepCluster [17]	42.9	54.1	65.6	76.2	32.6	43.8	57.0	69.5	34.6	52.6	66.8
MOM [24]	45.3	57.8	68.6	78.4	35.5	48.2	60.6	72.4	43.3	57.2	73.2
AND [39]	47.3	59.4	71.0	80.0	38.4	49.6	60.2	72.9	47.4	62.6	77.1
ISIF [26]	46.2	59.0	70.1	80.2	41.3	52.3	63.6	74.9	48.9	64.0	78.0
sSUML [40]	43.5	56.2	68.3	79.1	42.0	54.3	66.0	77.2	47.8	63.6	78.3
Ortho [41]	47.1	59.7	72.1	82.8	45.0	56.2	66.7	76.6	45.5	61.6	77.1
PSLR [42]	48.1	60.1	71.8	81.6	43.7	54.8	66.1	76.2	51.1	66.5	79.8
ROUL [36]	56.7	68.4	78.3	86.3	45.0	56.9	68.4	78.6	53.4	68.8	81.7
SAN [43]	55.9	68.0	78.6	86.8	44.2	55.5	66.8	76.9	58.7	73.1	84.6
STML* [19]	57.7	69.8	80.1	87.1	48.0	58.7	69.5	79.5	63.8	77.8	88.9
Ours	60.6 ± 0.3	$\textbf{71.1} \pm \textbf{0.2}$	$\textbf{81.1} \pm \textbf{0.1}$	87.8 ± 0.1	49.5 ± 0.3	60.6 ± 0.3	$\textbf{72.1} \pm \textbf{0.2}$	80.9 ± 0.2	65.1 ± 0.3	$\textbf{80.4} \pm \textbf{0.2}$	90.2 ± 0.1
GoogleNet (512 dim)											
UDML-SS [23]	54.7	66.9	77.4	86.1	45.1	56.1	66.5	75.7	63.5	78.0	88.6
TAC-CCL [16]	57.5	68.8	78.8	87.2	46.1	56.9	67.5	76.7	63.9	77.6	87.8
UHML [15]	58.9	70.6	80.4	87.7	47.7	58.9	70.3	80.3	65.1	78.2	88.3
STML* [19]	58.6	70.2	80.9	87.9	48.6	60.4	71.3	80.8	65.1	79.7	89.1
Ours	61.7 ± 0.3	$\textbf{72.5} \pm \textbf{0.2}$	82.2 ± 0.2	$\textbf{88.3} \pm \textbf{0.1}$	51.2 ± 0.2	62.2 ± 0.2	$\textbf{72.1} \pm \textbf{0.2}$	$\textbf{81.0} \pm \textbf{0.1}$	66.4 ± 0.2	$\textbf{81.1} \pm \textbf{0.1}$	90.6 ± 0.1

Results: Quality of Extracted Similarity

- Compare quality of similarity estimated by our method with previous methods using
 - 1) Correlation of similarity with ground truth
 - 2) Purity of labels within the submanifolds

Metric \rightarrow	Lab	el Purity		Correlati	ion with (Ground truth
Methods ↓	CUB200	Cars196	SOP	CUB200	Cars196	SOP
K-Means [17]	0.38	0.29	0.32	0.37	0.21	0.32
Hierarchical Clustering [15]	0.49	0.33	0.39	0.52	0.36	0.49
Random Walk [24]	-	-	-	0.45	0.26	0.42
Ours	0.67	0.45	0.62	0.61	0.45	0.67

Results: Ablation

• Subset selection for constructing linear submanifolds improves performance!

• Using a continuous valued similarity improves performance

Method	R@1	R@2
Ours without subset selection	58.4	70.8 [·]
Ours	61.7	72.5

Method	R@1	R@2
Ours with binary similarity	54.2	66.5
Ours	61.7	72.5

Recall@K reported on the CUB-200-2011 dataset averaged over 5 runs

Results: Ablation

More Proxies -> better performance (till saturation)

- Similarity decay in both directions (N_{α} , $N_{\beta} > 0$) outperforms decay in one
- Faster decay in orthogonal direction ($N_{\alpha} > N_{\beta}$) helps

Recall@1 reported on the CUB-200-2011 dataset averaged over 5 runs

Conclusion

- Proposed a novel method for unsupervised deep metric learning which
 - Uses a Piecewise Linear model of the data manifold
 - Estimates a continuous valued similarity
 - Makes use of proxies to augment model
 - Achieves state-of-the-art performance for zero-shot image retrieval
- Shows the importance of better modelling the structure of data in the feature space

Thank You! Questions ?

